GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:22150160

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Seo, PJ, Park, J, Park, MJ, Kim, YS, Kim, SG, Jung, JH and Park, CM (2012) A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. Biochem. J. 442:551-61

Abstract

Iron is an essential micronutrient that acts as a cofactor in a wide variety of pivotal metabolic processes, such as the electron transport chain of respiration, photosynthesis and redox reactions, in plants. However, its overload exceeding the cellular capacity of iron binding and storage is potentially toxic to plant cells by causing oxidative stress and cell death. Consequently, plants have developed versatile mechanisms to maintain iron homoeostasis. Organismal iron content is tightly regulated at the steps of uptake, translocation and compartmentalization. Whereas iron uptake is fairly well understood at the cellular and organismal levels, intracellular and intercellular transport is only poorly understood. In the present study, we show that a MATE (multidrug and toxic compound extrusion) transporter, designated BCD1 (BUSH-AND-CHLOROTIC-DWARF 1), contributes to iron homoeostasis during stress responses and senescence in Arabidopsis. The BCD1 gene is induced by excessive iron, but repressed by iron deficiency. It is also induced by cellular and tissue damage occurring under osmotic stress. The activation-tagged mutant bcd1-1D exhibits leaf chlorosis, a typical symptom of iron deficiency. The chlorotic lesion of the mutant was partially recovered by iron feeding. Whereas the bcd1-1D mutant accumulated a lower amount of iron, the iron level was elevated in the knockout mutant bcd1-1. The BCD1 protein is localized to the Golgi complex. We propose that the BCD1 transporter plays a role in sustaining iron homoeostasis by reallocating excess iron released from stress-induced cellular damage.

Links

PubMed Online version:10.1042/BJ20111311

Keywords

Arabidopsis/metabolism; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism; Gene Expression Regulation, Plant; Golgi Apparatus/metabolism; Homeostasis; Iron/metabolism; Organic Cation Transport Proteins/genetics; Organic Cation Transport Proteins/metabolism; Osmosis/physiology; Plant Leaves/metabolism

public



Cancel