GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:19666558

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Chen, H, Ko, G, Zatti, A, Di Giacomo, G, Liu, L, Raiteri, E, Perucco, E, Collesi, C, Min, W, Zeiss, C, De Camilli, P and Cremona, O (2009) Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc. Natl. Acad. Sci. U.S.A. 106:13838-43

Abstract

Epsins are endocytic adaptors with putative functions in general aspects of clathrin-mediated endocytosis as well as in the internalization of specific membrane proteins. We have now tested the role of the ubiquitously expressed epsin genes, Epn1 and Epn2, by a genetic approach in mice. While either gene is dispensable for life, their combined inactivation results in embryonic lethality at E9.5-E10, i.e., at the beginning of organogenesis. Consistent with studies in Drosophila, where epsin endocytic function was linked to Notch activation, developmental defects observed in epsin 1/2 double knockout (DKO) embryos recapitulated those produced by a global impairment of Notch signaling. Accordingly, expression of Notch primary target genes was severely reduced in DKO embryos. However, housekeeping forms of clathrin-mediated endocytosis were not impaired in cells derived from these embryos. These findings support a role of epsin as a specialized endocytic adaptor, with a critical role in the activation of Notch signaling in mammals.

Links

PubMed PMC2728981 Online version:10.1073/pnas.0907008106

Keywords

Adaptor Proteins, Vesicular Transport/metabolism; Adaptor Proteins, Vesicular Transport/physiology; Animals; Clathrin/metabolism; Endocytosis; Fibroblasts/metabolism; Gene Expression Regulation, Developmental; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Genetic; Phenotype; Receptors, Notch/metabolism; Signal Transduction; Time Factors; Tissue Distribution

public



Cancel