GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:15728580

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Gemmill, TR, Wu, X and Hanes, SD (2005) Vanishingly low levels of Ess1 prolyl-isomerase activity are sufficient for growth in Saccharomyces cerevisiae. J. Biol. Chem. 280:15510-7

Abstract

Ess1 is an essential peptidylprolyl-cis/trans-isomerase in the yeast Saccharomyces cerevisiae. Ess1 and its human homolog, Pin1, bind to phospho-Ser-Pro sites within proteins, including the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (pol II). Ess1 and Pin1 are thought to control mRNA synthesis by catalyzing conformational changes in Rpb1 that affect interaction of cofactors with the pol II transcription complex. Here we have characterized wild-type and mutant Ess1 proteins in vitro and in vivo. We found that Ess1 preferentially binds and isomerizes CTD heptad-repeat (YSPTSPS) peptides that are phosphorylated on Ser5. Binding by the mutant proteins in vitro was essentially normal, and the proteins were largely stable in vivo. However, their catalytic activities were reduced >1,000-fold. These data along with results of in vivo titration experiments indicate that Ess1 isomerase activity is required for growth, but only at vanishingly low levels. We found that although wild-type cells contain about approximately 200,000 molecules of Ess1, a level of fewer than 400 molecules per cell is sufficient for growth. In contrast, higher levels of Ess1 were required for growth in the presence of certain metabolic inhibitors, suggesting that Ess1 is important for tolerance to environmental challenge.

Links

PubMed Online version:10.1074/jbc.M412172200

Keywords

Cell Wall/metabolism; Mutation; Peptidylprolyl Isomerase/genetics; Peptidylprolyl Isomerase/metabolism; Saccharomyces cerevisiae/enzymology; Saccharomyces cerevisiae/growth & development

public



Cancel