GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:17191253

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Shibukawa, Y, Young, B, Wu, C, Yamada, S, Long, F, Pacifici, M and Koyama, E (2007) Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev. Dyn. 236:426-34

Abstract

The temporomandibular joint (TMJ) is essential for jaw function, but the mechanisms regulating its development remain poorly understood. Because Indian hedgehog (Ihh) regulates trunk and limb skeletogenesis, we studied its possible roles in TMJ development. In wild-type mouse embryos, Ihh expression was already strong in condylar cartilage by embryonic day (E) 15.5, and expression of Ihh receptors and effector genes (Gli1, Gli2, Gli3, and PTHrP) indicated that Ihh range of action normally reached apical condylar tissue layers, including polymorphic chondroprogenitor layer and articular disc primordia. In Ihh(-/-) embryos, TMJ development was severely compromised. Condylar cartilage growth, polymorphic cell proliferation, and PTHrP expression were all inhibited, and growth plate organization and chondrocyte gene expression patterns were abnormal. These severe defects were partially corrected in double Ihh(-/-)/Gli3(-/-) mutants, signifying that Ihh action is normally modulated and delimited by Gli3 and Gli3(R) in particular. Both single and double mutants, however, failed to form an articular disc primordium, normally appreciable as an independent condensation between condylar apex and neighboring developing temporal bone in wild-type. This failure persisted at later stages, leading to complete absence of a normal functional disc and lubricin-expressing joint cavities. In summary, Ihh is very important for TMJ development, where it appears to regulate growth and elongation events, condylar cartilage phenotype, and chondroprogenitor cell function. Absence of articular disc and joint cavities in single and double mutants points to irreplaceable Ihh roles in formation of those critical TMJ components.

Links

PubMed Online version:10.1002/dvdy.21036

Keywords

Animals; DNA Primers; Gene Expression Regulation, Developmental; Hedgehog Proteins/metabolism; Hedgehog Proteins/physiology; In Situ Hybridization; Kruppel-Like Transcription Factors/metabolism; Mandibular Condyle/embryology; Mice; Mice, Knockout; Nerve Tissue Proteins/metabolism; Signal Transduction/physiology; Temporomandibular Joint/embryology

public



Cancel