GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:20054002

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Ouchi, N, Asaumi, Y, Ohashi, K, Higuchi, A, Sono-Romanelli, S, Oshima, Y and Walsh, K (2010) DIP2A functions as a FSTL1 receptor. J. Biol. Chem. 285:7127-34

Abstract

FSTL1 is an extracellular glycoprotein whose functional significance in physiological and pathological processes is incompletely understood. Recently, we have shown that FSTL1 acts as a muscle-derived secreted factor that is up-regulated by Akt activation and ischemic stress and that FSTL1 exerts favorable actions on the heart and vasculature. Here, we sought to identify the receptor that mediates the cellular actions of FSTL1. We identified DIP2A as a novel FSTL1-binding partner from the membrane fraction of endothelial cells. Co-immunoprecipitation assays revealed a direct physical interaction between FSTL1 and DIP2A. DIP2A was present on the cell surface of endothelial cells, and knockdown of DIP2A by small interfering RNA reduced the binding of FSTL1 to cells. In cultured endothelial cells, knockdown of DIP2A by small interfering RNA diminished FSTL1-stimulated survival, migration, and differentiation into network structures and inhibited FSTL1-induced Akt phosphorylation. In cultured cardiac myocytes, ablation of DIP2A reduced the protective actions of FSTL1 on hypoxia/reoxygenation-induced apoptosis and suppressed FSTL1-induced Akt phosphorylation. These data indicate that DIP2A functions as a novel receptor that mediates the cardiovascular protective effects of FSTL1.

Links

PubMed PMC2844162 Online version:10.1074/jbc.M109.069468

Keywords

Animals; Apoptosis/physiology; Carrier Proteins/genetics; Carrier Proteins/metabolism; Cell Differentiation/physiology; Cell Movement/physiology; Cells, Cultured; Endothelial Cells/cytology; Endothelial Cells/physiology; Follistatin-Related Proteins/genetics; Follistatin-Related Proteins/metabolism; Humans; Mice; Myocytes, Cardiac/cytology; Myocytes, Cardiac/physiology; Nuclear Proteins/genetics; Nuclear Proteins/metabolism; Proto-Oncogene Proteins c-akt/genetics; Proto-Oncogene Proteins c-akt/metabolism; RNA, Small Interfering/genetics; RNA, Small Interfering/metabolism; Rats; Signal Transduction/physiology

public



Cancel