GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:11559703

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Tan, KM, Chan, SL, Tan, KO and Yu, VC (2001) The Caenorhabditis elegans sex-determining protein FEM-2 and its human homologue, hFEM-2, are Ca2+/calmodulin-dependent protein kinase phosphatases that promote apoptosis. J. Biol. Chem. 276:44193-202

Abstract

In Caenorhabditis elegans, fem-1, fem-2, and fem-3 play pivotal roles in sex determination. Recently, a mammalian homologue of the C. elegans sex-determining protein FEM-1, F1Aalpha, has been described. Although there is little evidence to link F1Aalpha to sex determination, F1Aalpha and FEM-1 both promote apoptosis in mammalian cells. Here we report the identification and characterization of a human homologue of the C. elegans sex-determining protein FEM-2, hFEM-2. Similar to FEM-2, hFEM-2 exhibited PP2C phosphatase activity and associated with FEM-3. hFEM-2 shows striking similarity (79% amino acid identity) to rat Ca(2+)/calmodulin (CaM)-dependent protein kinase phosphatase (rCaMKPase). hFEM-2 and FEM-2, but not PP2Calpha, were demonstrated to dephosphorylate CaM kinase II efficiently in vitro, suggesting that hFEM-2 and FEM-2 are specific phosphatases for CaM kinase. Furthermore, hFEM-2 and FEM-2 associated with F1Aalpha and FEM-1 respectively. Overexpression of hFEM-2, FEM-2, or rCaMKPase all mediated apoptosis in mammalian cells. The catalytically active, but not the inactive, forms of hFEM-2 induced caspase-dependent apoptosis, which was blocked by Bcl-XL or a dominant negative mutant of caspase-9. Taken together, our data suggest that hFEM-2 and rCaMKPase are mammalian homologues of FEM-2 and they are evolutionarily conserved CaM kinase phosphatases that may have a role in apoptosis signaling.

Links

PubMed Online version:10.1074/jbc.M105880200

Keywords

Amino Acid Sequence; Animals; Apoptosis; Caenorhabditis elegans/metabolism; Caenorhabditis elegans Proteins; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases/metabolism; Cell Line; Helminth Proteins/chemistry; Helminth Proteins/metabolism; Humans; Mice; Molecular Sequence Data; Phosphoprotein Phosphatases; Phosphorylation; Sequence Homology, Amino Acid

public



Cancel