GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:9098922

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Wlodarczyk, BC, Craig, JC, Bennett, GD, Calvin, JA and Finnell, RH (1996) Valproic acid-induced changes in gene expression during neurulation in a mouse model. Teratology 54:284-97

Abstract

The teratogenic potential of valproic acid has been well established both in experimental models and in human clinical studies. As with all human teratogens, there are genetically determined differences in individual susceptibility to the induction of congenital defects. Using a mouse model of valproate-induced neural tube defects, a study was undertaken to examine differential changes in gene expression for selected transcription factor (Pax-3, Emx-1, Emx-2, c-fos, c-jun, creb) and cell cycle checkpoint genes (bcl-2, p53, wee-1) during neural tube closure. In general, exposure to teratogenic concentrations of valproic acid elicited GD 9:12 control levels of transcription factor mRNA expression in GD 9:0 embryos of both strains. This accelerated developmental profile is marked by significant elevation of Emx-1, Emx-2, c-fos, c-jun, and creb expression. There was also a significant over expression of the cell cycle genes p53 and bcl-2 in the LM/Bc embryos in response to the teratogenic insult. Examination of the ratio of expression of these genes clearly favored bcl-2, which supports the hypothesis that altered neuroepithelial cell proliferation rates, rather than increased apoptosis, is the underlying mechanism by which valproic acid alters normal neural tube morphogenesis. An investigation into interactive effects of these genes on the molecular profile of GD 9:0 embryos further validated this observation. That is, the overall proliferative state among the control embryos was prematurely modified into a more differentiated state following teratogenic insult. These results suggest that alterations in the expression of multiple genes are most likely responsible for valproic acid-induced neural tube defects.

Links

PubMed Online version:<284::AID-TERA3>3.0.CO;2-Z 10.1002/(SICI)1096-9926(199612)54:6<284::AID-TERA3>3.0.CO;2-Z

Keywords

Animals; Gene Expression/drug effects; Mice; Mice, Inbred Strains; Models, Biological; Multivariate Analysis; Nervous System/drug effects; Nervous System/embryology; Nervous System/metabolism; Neural Tube Defects/chemically induced; Teratogens/toxicity; Valproic Acid/toxicity

public



Cancel