GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:11500378

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Siddiqi, IN, Dodd, JA, Vu, L, Eliason, K, Oakes, ML, Keener, J, Moore, R, Young, MK and Nomura, M (2001) Transcription of chromosomal rRNA genes by both RNA polymerase I and II in yeast uaf30 mutants lacking the 30 kDa subunit of transcription factor UAF. EMBO J. 20:4512-21

Abstract

UAF, a yeast RNA polymerase I transcription factor, contains Rrn5p, Rrn9p, Rrn10p, histones H3 and H4, and uncharacterized protein p30. Mutants defective in RRN5, RRN9 or RRN10 are unable to transcribe rDNA by polymerase I and grow extremely slowly, but give rise to variants able to grow by transcribing chromosomal rDNA by polymerase II. Thus, UAF functions as both an activator of polymerase I and a silencer of polymerase II for rDNA transcription. We have now identified the gene for subunit p30. This gene, UAF30, is not essential for growth, but its deletion decreases the cellular growth rate. Remarkably, the deletion mutants use both polymerase I and II for rDNA transcription, indicating that the silencer function of UAF is impaired, even though rDNA transcription by polymerase I is still occurring. A UAF complex isolated from the uaf30 deletion mutant was found to retain the in vitro polymerase I activator function to a large extent. Thus, Uaf30p plays only a minor role in its activator function. Possible reasons for slow growth caused by uaf30 mutations are discussed.

Links

PubMed PMC125573 Online version:10.1093/emboj/20.16.4512

Keywords

Amino Acid Sequence; Chromosomes; DNA, Ribosomal; DNA-Binding Proteins/genetics; Humans; Molecular Sequence Data; RNA Polymerase I/metabolism; RNA Polymerase II/metabolism; RNA, Ribosomal; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Transcription Factors/genetics; Transcription Factors/metabolism; Transcription, Genetic

public



Cancel