GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:25690660

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Kobayashi, M, Konishi, H, Takai, T and Kiyama, H (2015) A DAP12-dependent signal promotes pro-inflammatory polarization in microglia following nerve injury and exacerbates degeneration of injured neurons. Glia 63:1073-82

Abstract

Under pathological conditions, activated microglia play paradoxical roles and could have neurotoxic or neuroprotective effects. However, the signal determining how activated microglia affects the fate of neuronal cells remains largely unknown. Here we demonstrate that DNAX-activating protein of 12 kDa (DAP12), a transmembrane adaptor protein that contains an immunoreceptor tyrosine-based activation motif, is a critical regulator of microglial function after nerve injury. In a model of mouse hypoglossal nerve injury, the duration of microglial increase after nerve injury became shorter in mice lacking DAP12, although microglial morphology and total cell numbers were not significantly affected during early phase after nerve injury. Intriguingly, expressions of M1-phenotype markers including pro-inflammatory cytokines were suppressed in DAP12-deficient microglia. Furthermore, axotomy-induced motor neuron death was markedly prevented in DAP12-deficient mice. Collectively, DAP12-mediated microglial activation following axotomy promotes pro-inflammatory responses, and thereby accelerates nerve injury-induced neuron death, suggesting that DAP12 is a potential therapeutic target for the protection of neuronal degeneration caused by microglial activation.

Links

PubMed Online version:10.1002/glia.22802

Keywords

Adaptor Proteins, Signal Transducing/genetics; Adaptor Proteins, Signal Transducing/metabolism; Animals; Cell Count; Cell Death/physiology; Cells, Cultured; Cytokines/metabolism; Disease Models, Animal; Hypoglossal Nerve Injuries/pathology; Hypoglossal Nerve Injuries/physiopathology; Lipopolysaccharides/toxicity; Male; Mice, Inbred C57BL; Mice, Knockout; Microglia/pathology; Microglia/physiology; Motor Neurons/pathology; Motor Neurons/physiology; Nerve Degeneration/pathology; Nerve Degeneration/physiopathology; Time Factors

public



Cancel