GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:23328768

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Fiorentini, C, Savoia, P, Savoldi, D, Barbon, A and Missale, C (2013) Persistent activation of the D1R/Shp-2/Erk1/2 pathway in l-DOPA-induced dyskinesia in the 6-hydroxy-dopamine rat model of Parkinson's disease. Neurobiol. Dis. 54:339-48

Abstract

Prolonged l-3,4-dihydroxyphenylalanine (l-DOPA) administration, the gold standard therapy for Parkinson's disease (PD) is associated with serious motor complications, known as l-DOPA-induced dyskinesia (LID). One of the major molecular changes associated with LID is the increased activity of the extracellular signal-regulated kinases 1/2 (Erk1/2) signaling in the medium spiny neurons of the striatum induced by malfunctioning in the dopamine D1 receptor (D1R)-mediated transmission. We have previously established that in the striatum, activation of Shp-2, an intracellular tyrosine phosphatase associated with the D1R, is a requisite for the D1R to activate Erk1/2. In this study, we investigated the role of striatal D1R/Shp-2 complex in the molecular event underlying LID in the 6-OHDA-lesioned rat model of PD. We found that in hemiparkinsonian rats experiencing LID, the physiological interaction between D1R and Shp-2 in the striatum was preserved. In these animals, the chronic activation of D1R either by l-DOPA or by the selective D1R agonist SKF 38393 induced both dyskinesia and Shp-2/Erk1/2 activation. These effects were prevented by the selective D1R-antagonist SCH23390 suggesting the involvement of striatal D1R/Shp-2 complex, via Erk1/2 activation, in the molecular events underlying LID. Interestingly, we found that D1R-mediated Shp-2-Erk1/2 activation was persistently detected in the striatum of dyskinetic rats during l-DOPA washout, with a close correlation between LID severity and the extent of long term activation of both Shp-2 and Erk1/2. Taken together, our data show that in hemiparkinsonian rats developing dyskinesia, the aberrant phosphorylation of Shp-2 by D1R activation, represents an upstream molecular event leading to the persistent phosphorylation of Erk1/2 and therefore a novel therapeutic target to counteract LID development and maintenance during l-DOPA therapy.

Links

PubMed Online version:10.1016/j.nbd.2013.01.005

Keywords

Adrenergic Agents/toxicity; Animals; Antiparkinson Agents/pharmacology; Blotting, Western; Dyskinesia, Drug-Induced/metabolism; Immunoprecipitation; Levodopa/pharmacology; MAP Kinase Signaling System/physiology; Male; Oxidopamine/toxicity; Parkinsonian Disorders/metabolism; Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism; Rats; Rats, Wistar; Receptors, Dopamine D1/metabolism

public



Cancel