GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:8634266

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Heimburg, T, Schuenemann, J, Weber, K and Geisler, N (1996) Specific recognition of coiled coils by infrared spectroscopy: analysis of the three structural domains of type III intermediate filament proteins. Biochemistry 35:1375-82

Abstract

The central domain of cytoplasmic intermediate filament (IF) proteins from vertebrates contains some 310 residues and forms a double-stranded coiled coil (rod) with a length of about 46 nm. The flanking terminal domains show a high cell type specific variability both in sequence and in length. Using Fourier transform infrared (FTIR) spectroscopy we measured secondary structures of isolated domains of type III and IV IF proteins and of the soluble tetramers and the filaments formed by type III IF proteins. The amide I spectrum of the desmin rod is virtually identical to the spectra of other coiled-coil proteins such as tropomyosin and the myosin rod. All these double-stranded coiled coils reveal spectra distinctly different from classical alpha-helical spectra. The spectrum of coiled coils is a triplet of approximately equally strong bands. One band occurs at normal alpha-helix position, while the other two are found at lower wavenumbers. Theoretical aspects of these findings are discussed in the accompanying paper by W. C. Reisdorf and S. Krimm [(1996) Biochemistry 35, 1383-1386]. The amino-terminal head domain of desmin has a multicomponent spectrum with major fractions of beta-sheet. The carboxy-terminal tail domains of desmin and the neurofilament proteins L and H, the latter in the phosphorylated and in the dephosphorylated forms, have very similar FTIR spectra, indicating mostly random structure. The spectrum of desmin type III protofilaments is very similar to the sum of the spectra of the three isolated domains. Polymerization into filaments seems to induce a small change in secondary structure.

Links

PubMed Online version:10.1021/bi9515883

Keywords

Desmin/chemistry; Intermediate Filament Proteins/chemistry; Protein Structure, Tertiary; Spectroscopy, Fourier Transform Infrared; Tropomyosin/chemistry; Vimentin/chemistry

public



Cancel