GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:9305894

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Muta, T, Kang, D, Kitajima, S, Fujiwara, T and Hamasaki, N (1997) p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J. Biol. Chem. 272:24363-70

Abstract

Human p32, originally cloned as a splicing factor 2-associated protein, has been reported to interact with a variety of molecules including human immunodeficiency virus Tat and complement 1q (C1q). p32 protein is supposed to be in the nucleus and on the plasma membrane for the association with human immunodeficiency virus Tat and C1q, respectively. None of the interactions, however, is proven to have a physiological role. To investigate the physiological function of p32, we determined the intracellular localization of p32. The fractionation of cells, fluorescent immunocytochemistry, and electron microscopic immunostaining show that p32 is exclusively localized in the mitochondrial matrix. We cloned a Saccharomyces cerevisiae homologue of human p32 gene, referred to yeast p30 gene. The yeast p30 protein is also localized in the mitochondrial matrix. The disruption of the p30 gene caused the growth retardation of yeast cells in a glycerol medium but not in a glucose medium, i.e. the impairment of the mitochondrial ATP synthesis. The growth impairment was restored by the introduction of the human p32 cDNA, indicating that p30 is a functional yeast counterpart of human p32. Taken together, both p32 and p30 reside in mitochondrial matrix and play an important role in maintaining mitochondrial oxidative phosphorylation.

Links

PubMed

Keywords

Amino Acid Sequence; Antigens, CD44; Carrier Proteins; Cell Line; Cell Nucleus/metabolism; Gene Targeting; Humans; Immunohistochemistry; Mitochondria/metabolism; Mitochondrial Proteins; Molecular Sequence Data; Oxidative Phosphorylation; Proteins/metabolism; RNA Splicing; Saccharomyces cerevisiae/genetics; Sequence Homology, Amino Acid

public



Cancel