GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com


Jump to: navigation, search

Kieper, J, Lauber, C, Gimadutdinow, O, Urbańska, A, Cymerman, I, Ghosh, M, Szczesny, B and Meiss, G (2010) Production and characterization of recombinant protein preparations of Endonuclease G-homologs from yeast, C. elegans and humans. Protein Expr. Purif. 73:99-106


Nuc1p, CPS-6, EndoG and EXOG are evolutionary conserved mitochondrial nucleases from yeast, Caenorhabditis elegans and humans, respectively. These enzymes play an important role in programmed cell death as well as mitochondrial DNA-repair and recombination. Whereas a significant interest has been given to the cell biology of these proteins, in particular their recruitment during caspase-independent apoptosis, determination of their biochemical properties has lagged behind. In part, biochemical as well as structural analysis of mitochondrial nucleases has been hampered by the fact that upon cloning and overexpression in Escherichia coli these enzymes can exert considerable toxicity and tend to aggregate and form inclusion bodies. We have, therefore, established a uniform E. coli expression system allowing us to obtain these four evolutionary related nucleases in active form from the soluble as well as insoluble fractions of E. coli cell lysates. Using preparations of recombinant Nuc1p, CPS-6, EndoG and EXOG we have compared biochemical properties and the substrate specificities of these related nucleases on selected substrates in parallel. Whereas Nuc1p and EXOG in addition to their endonuclease activity exert 5'-3'-exonuclease activity, CPS-6 and EndoG predominantly are endonucleases. These findings allow speculating that the mechanisms of action of these related nucleases in cell death as well as DNA-repair and recombination differ according to their enzyme activities and substrate specificities.


PubMed Online version:10.1016/j.pep.2010.04.001


Amino Acid Sequence; Animals; Caenorhabditis elegans/genetics; Caenorhabditis elegans Proteins/biosynthesis; Caenorhabditis elegans Proteins/chemistry; Caenorhabditis elegans Proteins/genetics; Caenorhabditis elegans Proteins/metabolism; DNA/chemistry; DNA/genetics; DNA/metabolism; DNA Repair; Endodeoxyribonucleases/biosynthesis; Endodeoxyribonucleases/chemistry; Endodeoxyribonucleases/genetics; Endodeoxyribonucleases/metabolism; Endonucleases/biosynthesis; Endonucleases/chemistry; Endonucleases/genetics; Endonucleases/metabolism; Escherichia coli/genetics; Escherichia coli/metabolism; Humans; Hydrogen-Ion Concentration; Mitochondrial Proteins/biosynthesis; Mitochondrial Proteins/chemistry; Mitochondrial Proteins/genetics; Mitochondrial Proteins/metabolism; Molecular Sequence Data; Recombinant Proteins/biosynthesis; Recombinant Proteins/chemistry; Recombinant Proteins/genetics; Saccharomyces cerevisiae/genetics; Saccharomyces cerevisiae Proteins/biosynthesis; Saccharomyces cerevisiae Proteins/chemistry; Saccharomyces cerevisiae Proteins/genetics; Sequence Alignment; Spectrometry, Fluorescence



Gene product Qualifier GO Term Evidence Code with/from Aspect Extension Notes Status



GO:0004520: endodeoxyribonuclease activity

ECO:0000314: direct assay evidence used in manual assertion


Seeded From UniProt




GO:0000737: DNA catabolic process, endonucleolytic

ECO:0000314: direct assay evidence used in manual assertion


Seeded From UniProt


See also


See Help:References for how to manage references in GONUTS.