GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:19641131

From GONUTS
Jump to: navigation, search
Citation

Perry, SF, Vulesevic, B, Grosell, M and Bayaa, M (2009) Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R988-97

Abstract

Experiments were performed to test the hypothesis that three members of the SLC26 anion transporter gene family (SLC26a3, A4, and A6; hereafter termed za3, za4, and za6) mediate branchial Cl(-)/HCO(3)(-) exchange in adult zebrafish (Danio rerio). Real-time RT-PCR demonstrated that the gill expressed relatively high levels of za6 mRNA; za3 and za4 mRNA, while present, were less abundant. Also, za4 and za6 were expressed at relatively high levels in the kidney. The results of in situ hybridization or immunocytochemistry (za3 only) experiments performed on gill sections revealed that the SLC26 transporters were predominantly expressed on the filament epithelium (especially within the interlamellar regions) and to a lesser extent on the lamellar epithelium at the base of lamellae. This distribution pattern suggests that the SLC26 anion transporters are localized to mitochondrion-rich cells (ionocytes). Transferring fish to water containing low [Cl(-)] (0.02 mmol/l) resulted in significant increases in branchial SLC26 mRNA expression after 5-10 days of exposure relative to fish raised in normal water [Cl(-)] (0.4 mmol/l); transferring fish to Cl(-)-enriched water (2.0 mmol/l) was without effect on mRNA levels. Transferring fish to water containing elevated levels of NaHCO(3) (10-12.5 mmol/l) caused marked increases in branchial SLC26 mRNA expression between 3 and 10 days of transfer that was associated with a significant 40% increase in Cl(-) uptake (as measured upon return to normal water after 7 days). A decrease in whole body net acid excretion (equivalent to an increase in net base excretion) in fish previously maintained in high [NaHCO(3)] water, concurrent with increases in Cl(-) uptake and SLC26 mRNA levels, suggests a role for these anion transporters in Cl(-) uptake and acid-base regulation owing to their Cl(-)/HCO(3)(-) exchange activities.

Links

PubMed Online version:10.1152/ajpregu.00327.2009

Keywords

Acid-Base Equilibrium; Adaptation, Physiological; Age Factors; Animals; Bicarbonates/metabolism; Biological Transport; Branchial Region/metabolism; Chloride-Bicarbonate Antiporters/genetics; Chloride-Bicarbonate Antiporters/metabolism; Chlorides/metabolism; Gills/metabolism; Mitochondria/metabolism; RNA, Messenger/metabolism; Zebrafish/metabolism; Zebrafish Proteins/genetics; Zebrafish Proteins/metabolism

Significance

Annotations

Gene product Qualifier GO Term Evidence Code with/from Aspect Extension Notes Status

DANRE:A0A2R8RSH7

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:A0A2R8RSH7

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:A9C3T3

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:A9C3T3

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:B6DUH7

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:B6DUH7

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:C8XTB7

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:C8XTB7

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:E7F9R9

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:E7F9R9

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:F1Q908

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:F1Q908

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:F1QGE0

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:F1QGE0

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:F1RCN8

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:F1RCN8

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:Q1L977

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:Q1L977

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:Q5RGV3

involved_in

GO:0009651: response to salt stress

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

DANRE:Q5RGV3

involved_in

GO:0055081: anion homeostasis

ECO:0000314: direct assay evidence used in manual assertion

P

Seeded From UniProt

complete


See also

References

See Help:References for how to manage references in GONUTS.