GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:15382142

From GONUTS
Jump to: navigation, search
Citation

Peel, A (2004) The evolution of arthropod segmentation mechanisms. Bioessays 26:1108-16

Abstract

The fruit fly, Drosophila melanogaster, patterns its segments rapidly and simultaneously, via a mechanism that relies on the ability of transcription factors to diffuse between blastoderm nuclei. Ancestral arthropods patterned posterior segments sequentially in a cellular environment, where free diffusion was likely to have been inhibited by the presence of cell membranes. Understanding how the Drosophila paradigm evolved is a problem that has interested evolutionary developmental biologists for some time. In this article, I review what is known about arthropod segmentation mechanisms, and present a model for the evolution of the Drosophila paradigm. The model predicts that the primary pair-rule genes of Drosophila ancestrally functioned within and/or downstream of a Notch-dependent segmentation clock, their striped expression gradually coming under the control of gap genes as the number of segments patterned simultaneously in the anterior increased and the number patterned sequentially via a segmentation clock mechanism in the posterior correspondingly decreased.

Links

PubMed Online version:10.1002/bies.20097

Keywords

Animals; Arthropods/genetics; Arthropods/growth & development; Biological Clocks; Biological Evolution; Body Patterning/genetics; Drosophila melanogaster/genetics; Drosophila melanogaster/growth & development; Gene Expression Regulation, Developmental; Genes, Insect; Models, Biological

Significance

Annotations

Gene product Qualifier GO ID GO term name Evidence Code with/from Aspect Notes Status


See also

References

See Help:References for how to manage references in GONUTS.