GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ECOLI:LEXA

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Escherichia coli (strain K12). (83333)
Gene Name(s) lexA (ECO:0000255 with HAMAP-Rule:MF_00015) (synonyms: exrA, spr, tsl, umuA)
Protein Name(s) LexA repressor (ECO:0000255 with HAMAP-Rule:MF_00015)
External Links
UniProt P0A7C2
EMBL J01643
U00006
U00096
AP009048
L02362
PIR A90808
RefSeq NP_418467.1
YP_492186.1
PDB 1JHC
1JHE
1JHF
1JHH
1LEA
1LEB
1MVD
1QAA
3JSO
3JSP
3K3R
PDBsum 1JHC
1JHE
1JHF
1JHH
1LEA
1LEB
1MVD
1QAA
3JSO
3JSP
3K3R
ProteinModelPortal P0A7C2
SMR P0A7C2
DIP DIP-51082N
IntAct P0A7C2
MINT MINT-1314348
STRING 511145.b4043
MEROPS S24.001
PaxDb P0A7C2
PRIDE P0A7C2
EnsemblBacteria AAC77013
BAE78045
GeneID 12932724
948544
KEGG ecj:Y75_p3930
eco:b4043
PATRIC 32123623
EchoBASE EB0528
EcoGene EG10533
eggNOG COG1974
HOGENOM HOG000232167
InParanoid P0A7C2
KO K01356
OMA IAETGMP
OrthoDB EOG6JHRHJ
PhylomeDB P0A7C2
BioCyc EcoCyc:PD00205
ECOL316407:JW4003-MONOMER
EvolutionaryTrace P0A7C2
PRO PR:P0A7C2
Proteomes UP000000318
UP000000625
Genevestigator P0A7C2
GO GO:0003677
GO:0004252
GO:0006974
GO:0006281
GO:0006260
GO:0045892
GO:0009432
GO:0006351
Gene3D 1.10.10.10
2.10.109.10
HAMAP MF_00015
InterPro IPR006200
IPR006199
IPR028360
IPR006197
IPR019759
IPR015927
IPR011991
Pfam PF01726
PF00717
PRINTS PR00726
SUPFAM SSF51306
TIGRFAMs TIGR00498

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0016481

negative regulation of transcription

PMID:368030[1]

ECO:0000315

1

Figure 2 and Figure 3

complete

involved_in

GO:0045892

negative regulation of transcription, DNA-templated

PMID:10760155[2]

ECO:0005653

northern assay evidence used in manual assertion

P

Seeded From UniProt

complete

Contributes to

GO:0009432

SOS response

PMID:21912525[3]

ECO:0000314

P

Figure 3:RecA extended interface patch residues are involved in RecA active filament formation. The bacterial recombinase protein RecA is pivotal to DNA repair [1]–[4] and to orchestrate the bacterial DNA damage response (SOS response) against natural, or drug-induced, genotoxic conditions.

complete

Contributes to

GO:0009432

PMID:21912525[3]

ECO:0000315

Figure 3:RecA extended interface patch residues are involved in RecA active filament formation. The bacterial recombinase protein RecA is pivotal to DNA repair [1]–[4] and to orchestrate the bacterial DNA damage response (SOS response) against natural, or drug-induced, genotoxic conditions.

complete

involved_in

GO:0045892

negative regulation of transcription, DNA-templated

PMID:21529368[4]

ECO:0001808

reverse transcription polymerase chain reaction evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0045892

negative regulation of transcription, DNA-templated

PMID:19210620[5]

ECO:0001808

reverse transcription polymerase chain reaction evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0032993

protein-DNA complex

PMID:10760155[2]

ECO:0005643

hydroxyl-radical footprinting evidence used in manual assertion

RefSeq:NC_000913.2

C

Seeded From UniProt

complete

part_of

GO:0032993

protein-DNA complex

PMID:21529368[4]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0032993

protein-DNA complex

PMID:19210620[5]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0032993

protein-DNA complex

PMID:10760155[2]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0001217

DNA-binding transcription repressor activity

PMID:10760155[2]

ECO:0005643

hydroxyl-radical footprinting evidence used in manual assertion

RefSeq:NC_000913.2

F

Seeded From UniProt

complete

enables

GO:0001217

DNA-binding transcription repressor activity

PMID:21529368[4]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0001217

DNA-binding transcription repressor activity

PMID:19210620[5]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0001217

DNA-binding transcription repressor activity

PMID:10760155[2]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000976

transcription regulatory region sequence-specific DNA binding

PMID:10760155[2]

ECO:0005643

hydroxyl-radical footprinting evidence used in manual assertion

RefSeq:NC_000913.2

F

Seeded From UniProt

complete

enables

GO:0000976

transcription regulatory region sequence-specific DNA binding

PMID:21529368[4]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000976

transcription regulatory region sequence-specific DNA binding

PMID:19210620[5]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000976

transcription regulatory region sequence-specific DNA binding

PMID:10760155[2]

ECO:0001807

electrophoretic mobility shift assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:24561554[6]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A7C2

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:20703307[7]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A7C2

F

Seeded From UniProt

complete

involved_in

GO:0045892

negative regulation of transcription, DNA-templated

PMID:10760155[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009432

SOS response

PMID:4343824[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006974

cellular response to DNA damage stimulus

PMID:2834329[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

PMID:10760155[2]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0009432

SOS response

PMID:3542969[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006351

transcription, DNA-templated

PMID:160562[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006351

transcription, DNA-templated

PMID:7027256[12]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006351

transcription, DNA-templated

PMID:7027255[13]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:18304323[14]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:15911532[15]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR006197

F

Seeded From UniProt

complete

enables

GO:0004252

serine-type endopeptidase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR006199
InterPro:IPR006200

F

Seeded From UniProt

complete

involved_in

GO:0006355

regulation of transcription, DNA-templated

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR006197

P

Seeded From UniProt

complete

involved_in

GO:0006508

proteolysis

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR006199

P

Seeded From UniProt

complete

involved_in

GO:0009432

SOS response

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR006200

P

Seeded From UniProt

complete

involved_in

GO:0045892

negative regulation of transcription, DNA-templated

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR006200

P

Seeded From UniProt

complete

involved_in

GO:0006260

DNA replication

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000075652

P

Seeded From UniProt

complete

involved_in

GO:0045892

negative regulation of transcription, DNA-templated

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000075652

P

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000075652

F

Seeded From UniProt

complete

involved_in

GO:0009432

SOS response

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000075652

P

Seeded From UniProt

complete

involved_in

GO:0006974

cellular response to DNA damage stimulus

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000075652

P

Seeded From UniProt

complete

enables

GO:0004252

serine-type endopeptidase activity

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000075652

F

Seeded From UniProt

complete

involved_in

GO:0006281

DNA repair

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000075652

P

Seeded From UniProt

complete

involved_in

GO:0006281

DNA repair

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0234

P

Seeded From UniProt

complete

enables

GO:0016787

hydrolase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0378

F

Seeded From UniProt

complete

involved_in

GO:0006260

DNA replication

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0235

P

Seeded From UniProt

complete

involved_in

GO:0009432

SOS response

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0742

P

Seeded From UniProt

complete

involved_in

GO:0006974

cellular response to DNA damage stimulus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0227

P

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0238

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Pacelli, LZ et al. (1979) Isolation and characterization of amber mutations in the lexA gene of Escherichia coli K-12. J. Bacteriol. 137 568-73 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Fernández De Henestrosa, AR et al. (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35 1560-72 PubMed GONUTS page
  3. 3.0 3.1 Adikesavan, AK et al. (2011) Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet. 7 e1002244 PubMed GONUTS page
  4. 4.0 4.1 4.2 4.3 Cambray, G et al. (2011) Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2 6 PubMed GONUTS page
  5. 5.0 5.1 5.2 5.3 Prysak, MH et al. (2009) Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Mol. Microbiol. 71 1071-87 PubMed GONUTS page
  6. Rajagopala, SV et al. (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat. Biotechnol. 32 285-90 PubMed GONUTS page
  7. Zhang, AP et al. (2010) Structure of the LexA-DNA complex and implications for SOS box measurement. Nature 466 883-6 PubMed GONUTS page
  8. Mount, DW et al. (1972) Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet lght-induced mutations. J. Bacteriol. 112 886-93 PubMed GONUTS page
  9. Lin, LL & Little, JW (1988) Isolation and characterization of noncleavable (Ind-) mutants of the LexA repressor of Escherichia coli K-12. J. Bacteriol. 170 2163-73 PubMed GONUTS page
  10. McCall, JO et al. (1987) Constitutive expression of the SOS response in recA718 mutants of Escherichia coli requires amplification of RecA718 protein. J. Bacteriol. 169 728-34 PubMed GONUTS page
  11. Little, JW & Harper, JE (1979) Identification of the lexA gene product of Escherichia coli K-12. Proc. Natl. Acad. Sci. U.S.A. 76 6147-51 PubMed GONUTS page
  12. Brent, R & Ptashne, M (1981) Mechanism of action of the lexA gene product. Proc. Natl. Acad. Sci. U.S.A. 78 4204-8 PubMed GONUTS page
  13. Little, JW et al. (1981) Purified lexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. U.S.A. 78 4199-203 PubMed GONUTS page
  14. Ishihama, Y et al. (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9 102 PubMed GONUTS page
  15. Lopez-Campistrous, A et al. (2005) Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Mol. Cell Proteomics 4 1205-9 PubMed GONUTS page