GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:15750210

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Fasulo, L, Ugolini, G and Cattaneo, A (2005) Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutation N279K. J. Alzheimers Dis. 7:3-13

Abstract

Pathological changes in the microtubule associated protein tau are a major hallmark of many human dementias collectively defined as tauopathies. In familiar frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), several mutations in the tau gene have been identified showing that primary malfunction of tau can lead to neurodegeneration. In addition to mutation at genetic level, a number of post-translational modifications of tau occur in tauopathies, including abnormal phosphorylation and aberrant proteolysis described in Alzheimer's Disease (AD). The presence of cleaved tau in AD neurons is associated with expression of markers for neuronal death. According to our previous work, tau is a substrate for the apoptotic protease caspase-3 that turns tau itself into an effector of apoptosis (tau cleaved at D-421), generating a positive-feedback loop that is self-propagating. Cleavage of tau by caspase-3 was recently confirmed to occur in AD brain as an early event. Here we show the apoptotic properties of tau fragment tau151-421 in primary cultures of rat hippocampal neurons; such cellular model is of special interest considering the selective vulnerability of hippocampal neurones in AD. The apoptotic capacity of tau151-421 is markedly enhanced by both treatment with amyloid peptide Abeta25-35, and the FTDP-17 tau mutation N279K.

Links

PubMed

Keywords

Apoptosis/physiology; Caspase 3; Caspases/physiology; DNA Mutational Analysis; DNA Primers/genetics; Dementia/genetics; Dementia/metabolism; Fluorescent Antibody Technique; Hippocampus/metabolism; Humans; Microtubule-Associated Proteins/genetics; Neurons/metabolism; Point Mutation/genetics; Polymerase Chain Reaction; Tauopathies/genetics; Tauopathies/metabolism; Transfection; tau Proteins/physiology

public



Cancel