GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:15710626

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Lee, DW, Zhao, X, Scarselletta, S, Schweinsberg, PJ, Eisenberg, E, Grant, BD and Greene, LE (2005) ATP binding regulates oligomerization and endosome association of RME-1 family proteins. J. Biol. Chem. 280:17213-20

Abstract

Members of the RME-1/mRme-1/EHD1 protein family have recently been shown to function in the recycling of membrane proteins from recycling endosomes to the plasma membrane. RME-1 family proteins are normally found in close association with recycling endosomes and the vesicles and tubules emanating from these endosomes, consistent with the proposal that these proteins directly participate in endosomal transport. RME-1 family proteins contain a C-terminal EH (eps15 homology) domain thought to be involved in linking RME-1 to other endocytic proteins, a coiled-coil domain thought to be involved in homo-oligomerization and an N-terminal P-loop domain thought to mediate nucleotide binding. In the present study, we show that both Caenorhabditis elegans and mouse RME-1 proteins bind and hydrolyze ATP. No significant GTP binding or hydrolysis was detected. Mutation or deletion of the ATP-binding P-loop prevented RME-1 oligomerization and at the same time dissociated RME-1 from endosomes. In addition, ATP depletion caused RME-1 to lose its endosome association in the cell, resulting in cytosolic localization. Taken together, these results indicate that ATP binding is required for oligomerization of mRme-1/EHD1, which in turn is required for its association with endosomes.

Links

PubMed Online version:10.1074/jbc.M412751200

Keywords

Adenosine Triphosphatases/chemistry; Adenosine Triphosphate/chemistry; Adenosine Triphosphate/metabolism; Animals; Blotting, Western; Caenorhabditis elegans; Caenorhabditis elegans Proteins/chemistry; Caenorhabditis elegans Proteins/metabolism; Cell Line; Cell Membrane/metabolism; Cytosol/metabolism; DNA/metabolism; Endosomes/metabolism; Escherichia coli/metabolism; Gene Deletion; Glutathione Transferase/metabolism; Green Fluorescent Proteins/chemistry; Green Fluorescent Proteins/metabolism; Guanosine Triphosphate/chemistry; Guanosine Triphosphate/metabolism; HeLa Cells; Humans; Hydrolysis; Kinetics; Mice; Microscopy, Confocal; Microscopy, Fluorescence; Mutation; Nucleotides/chemistry; Protein Binding; Protein Structure, Tertiary; Time Factors; Two-Hybrid System Techniques; Vesicular Transport Proteins/chemistry; Vesicular Transport Proteins/metabolism

public



Cancel