GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:21576464

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Koo, AJ, Cooke, TF and Howe, GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc. Natl. Acad. Sci. U.S.A. 108:9298-303

Abstract

The phytohormone jasmonoyl-L-isoleucine (JA-Ile) signals through the COI1-JAZ coreceptor complex to control key aspects of plant growth, development, and immune function. Despite detailed knowledge of the JA-Ile biosynthetic pathway, little is known about the genetic basis of JA-Ile catabolism and inactivation. Here, we report the identification of a wound- and jasmonate-responsive gene from Arabidopsis that encodes a cytochrome P450 (CYP94B3) involved in JA-Ile turnover. Metabolite analysis of wounded leaves showed that loss of CYP94B3 function in cyp94b3 mutants causes hyperaccumulation of JA-Ile and concomitant reduction in 12-hydroxy-JA-Ile (12OH-JA-Ile) content, whereas overexpression of this enzyme results in severe depletion of JA-Ile and corresponding changes in 12OH-JA-Ile levels. In vitro studies showed that heterologously expressed CYP94B3 converts JA-Ile to 12OH-JA-Ile, and that 12OH-JA-Ile is less effective than JA-Ile in promoting the formation of COI1-JAZ receptor complexes. CYP94B3-overexpressing plants displayed phenotypes indicative of JA-Ile deficiency, including defects in male fertility, resistance to jasmonate-induced growth inhibition, and susceptibility to insect attack. Increased accumulation of JA-Ile in wounded cyp94b3 leaves was associated with enhanced expression of jasmonate-responsive genes. These results demonstrate that CYP94B3 exerts negative feedback control on JA-Ile levels and performs a key role in attenuation of jasmonate responses.

Links

PubMed PMC3107288 Online version:10.1073/pnas.1103542108

Keywords

Animals; Arabidopsis/metabolism; Cyclopentanes/metabolism; Cyclopentanes/pharmacology; Cytochrome P-450 Enzyme System/metabolism; Fatty Acids/metabolism; Gene Expression Regulation, Enzymologic; Isoleucine/analogs & derivatives; Isoleucine/pharmacology; Metabolism; Mixed Function Oxygenases/metabolism; Models, Genetic; Oxylipins/metabolism; Phenotype; Plant Growth Regulators/metabolism; Plant Proteins/metabolism; Signal Transduction; Spodoptera

public



Cancel